Team:UC Davis E/Technology

From 2012e.igem.org

(Difference between revisions)
 
(16 intermediate revisions not shown)
Line 127: Line 127:
#menubar.right-menu { width:300px; display:block; float:left; margin-top:-80px; border: none;}
#menubar.right-menu { width:300px; display:block; float:left; margin-top:-80px; border: none;}
.right-menu ul { border: none; width: 300px;}
.right-menu ul { border: none; width: 300px;}
-
#footer-box { background-color: #216085; border: none; width: 100%; height: 100%; margin: -10px auto 0 auto; padding: 20px 0;}
+
#footer-box { background-color: rgba(191, 191, 191, 0.5); border: none; width: 850px; height: 30px; margin: -10px auto 0 auto; padding: 20px 0;}
.visualClear { display: none; }
.visualClear { display: none; }
#footer { border: none; width: 850px; margin: 0 auto; padding: 0;}
#footer { border: none; width: 850px; margin: 0 auto; padding: 0;}
Line 139: Line 139:
h3#siteSub { display: none;}
h3#siteSub { display: none;}
#contentSub {display: none;}
#contentSub {display: none;}
-
p:first-child { display: none;}
+
p:first-child { display: block;}
h1{border:none; width: 100%; clear: both;}
h1{border:none; width: 100%; clear: both;}
<!-- end of slides style -->
<!-- end of slides style -->
Line 171: Line 171:
body {
body {
display:inherit;
display:inherit;
-
background-color: rgba(255,255,255,1);
+
background-color: #e9e9e9;
background-image: url(' ');
background-image: url(' ');
background-size: 100%;
background-size: 100%;
Line 338: Line 338:
padding: 15px 15px 15px 15px;
padding: 15px 15px 15px 15px;
font: sans-serif;
font: sans-serif;
-
font-size: 13px;
+
font-size: 16px;
line-height:1.5em;
line-height:1.5em;
color:black;
color:black;
Line 351: Line 351:
color: #004b85;
color: #004b85;
font-weight:bold;
font-weight:bold;
 +
}
 +
#myleftbox .smallboxsite
 +
{
 +
width:820px;
 +
float:left;
 +
background-color:rgba(191,191,191,0.6 );
 +
margin-top: 17px;
 +
border-radius: 4px;
 +
padding: 15px 15px 15px 15px;
 +
font: sans-serif;
 +
font-size: 13px;
 +
line-height:1.5em;
 +
color:black;
 +
}
}
Line 588: Line 602:
 +
#catlinks {
 +
background-color:transparent;
 +
border:1px solid transparent;
 +
}
 +
#footpage {
 +
background-color:transparent;
 +
}
 +
#footer-box {
 +
background-color:rgba(191,191,191,0.5);
 +
}
#footer-box-1 {
#footer-box-1 {
          
          
Line 596: Line 620:
         border: 1px solid #444444;
         border: 1px solid #444444;
}
}
 +
 +
table {
 +
background-color: #bfbfbf;
 +
 +
}
 +
 +
td {
 +
padding-left: 0px;
 +
padding-top: 0px;
 +
padding-right: 10px;
 +
 +
}
 +
Line 668: Line 705:
   </div>
   </div>
-
<img src="https://static.igem.org/mediawiki/2012/5/5e/UCD_Technology_banner.jpg">
+
<img src="https://static.igem.org/mediawiki/2012e/c/c8/UCD_Technology_banner_11.jpg">
<div id="bodyContent">   
<div id="bodyContent">   
Line 684: Line 721:
<h1> Technology </h1>
<h1> Technology </h1>
<article>
<article>
 +
<table>
 +
<tr>
 +
<td>
 +
Synthetic biology uses engineering concepts to leverage the power of biology. Through the design and construction of biological systems it is now possible to turn organisms into living factories, capable of producing chemicals previously attainable only through expensive extractions or through the use of petrochemicals and other non-renewable resources. AmberCycle Industries is at the forefront of this emerging field, using synthetic biology to tackle problems for which nature has yet to find a solution.
 +
<br><br>
 +
AmberCycle has developed genetic engineering and screening technologies that enable us to modify the way microorganisms, or microbes, grow. By controlling these metabolic pathways, we are able to design microbes, and use them as living factories in established fermentation processes to convert industrially and commercially generated plastic waste into high value, renewable branded target molecules.
 +
<br><br>
 +
We first developed and applied our technology to create microbial strains that will produce purified terephthalic acid, a precursor of PET plastic.
 +
<br><br>
 +
</td>
 +
<td style="vertical-align:top"><img src="https://static.igem.org/mediawiki/2012e/6/62/UCD_E3.jpg"></td>
 +
</tr>
 +
</table>
Line 690: Line 740:
</div>
</div>
 +
 +
<!-- site map starts here -->
 +
<div id="myleftbox"  class="smallboxsite" style=" margin-top: 6px; padding-top: 15px; padding-left: 350px; width: 485px;">
 +
<ul style="font-size:10px;list-style-image:none;list-style-type:none;float:left;display:inline;color:#000000;"  >
 +
 +
<li style="float:left ;margin:0 10px;"><a href="https://2012e.igem.org/Team:UC_Davis_E/Terms_of_Use"> <p>Legal</p></a></li>
 +
 +
<li style="float:left ;margin:0 10px;"><a href="https://2012e.igem.org/Team:UC_Davis_E/Site_Map"> <p>Site Map</p></a></li>
 +
 +
</ul>
</div>
</div>
-
</div>
+
<!-- site map ends here -->
<!--  </div> -->
<!--  </div> -->

Latest revision as of 03:44, 28 October 2012

Team:UC Davis - 2012.igem.org




Technology

Synthetic biology uses engineering concepts to leverage the power of biology. Through the design and construction of biological systems it is now possible to turn organisms into living factories, capable of producing chemicals previously attainable only through expensive extractions or through the use of petrochemicals and other non-renewable resources. AmberCycle Industries is at the forefront of this emerging field, using synthetic biology to tackle problems for which nature has yet to find a solution.

AmberCycle has developed genetic engineering and screening technologies that enable us to modify the way microorganisms, or microbes, grow. By controlling these metabolic pathways, we are able to design microbes, and use them as living factories in established fermentation processes to convert industrially and commercially generated plastic waste into high value, renewable branded target molecules.

We first developed and applied our technology to create microbial strains that will produce purified terephthalic acid, a precursor of PET plastic.